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Abstract

This report is concerned with the problem of determining
global existence theorems for solutions y of operator equa-
tions F(x,y) = z for fixed x,z once local solvability condi-
tions are known. The problem is studied in the following

abstract setting: Given a relation ¢ between two topological

‘spaces such that ¢ behaves locally like a continuous mapping,

determine information about the "global" behavior of ¢. The
central condition assumed for & is a general continuation
property.deriQed from the so-called continuation method used in
the solvability theory of operator equations. The abstract
theory when applied to equations Fy = x, leads to a number of
new globai existence results for.such equations including, as a
special case, the wellknown Hadamard-Levy theorem and one of its
recent generalizations. For the case of implicit equations

F(x,y) = 0 in Banachspaces, the theory covers and extends the

results obtained by Ficken for the continuation method.
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LOCAL MAPPING RELATIONS AND GLOBAL IMPLICIT FUNCTION THEOREMSl)

by Werner C. RheinboldtZ)

1. Introduction

Consider thé broblem of solving a nonlinear equation
(1) | F(x,y) = z
with respect to y for given x and z. 1If, for example,
X,Y,z are elements of some Banachspaces, then under appropriate
conditions>about F, the wellknown implicit function theorem
assures the "local" solvability of (l1). The question arises
when such a local result leads to "global" existence theorems
for (1). Several authors, as, for example, Cesari [1], Ehrmann
[4], Hildebrandt and Graves [7], and Levy [87, have already ob-
tained results along this line. But these results were all
cloéely tied to the classical implicit function theorem, and no
general theory appears to‘exist which permits the deduction of
global solvability results once a local one is known.

The problem has considerable interest in numerical analysis.
In fact, when an operator equation
(2) Fy = x

is to be solved iteratively for y, the process converges usually

1) This work was in part supported by the National Aeronautics
and Space Administration under Grant NsG 398 and by the U.S.
Army Research Office (Durham) under Grant DA-AROD31-124-G676.

2) University of Maryland,: College Park, Maryland :
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only in a neighborhood of a solution. If for some other opera-
tor FO the equation 'Foy = X has been solved, then one may try

to "connect" F and F0 by an operator homotopy H(t,y) such
that H(O,y) = Foy and H(l1,y) = Fy, and to "move" along the solu-
tion "curve" y(t), 0 < t <1 of H(t,y) = x from the known solution

y(0) to the unknown y(l). This can be done, for instance, with

the help of a locally convergent iterative process by solving

H(tk,y) = x with y(tk_l) as initial approximation, where

0 = tO < t, <ioe< tm'= 1l is a suitable partition of the interval

This is the so-called "continuation method". For a review
of earlier work about this method see, for example, the introduc-
tioﬁ of Ficken [5] who then proceeds to develop certain results
about the global solvébility of H(t,y) = x by using the local
solvability provided 5y the implicit function theorem. Other

attacks on this problem are due to Davidenko [2]; see also

‘Yakovlev [12] and for some recent results, Davis [3] and Meyer [9].

In this paper we shall consider the problem of finding glo- \
bal existence theorems for (1) in the following setting. For
fixed 2z the problem depends only on the (multivalued) relation :

between x and y given by (l). We therefore consider




abstract relations ¢ between elements of a topological space

X .and another such space Y. The assumed validity of a local
implicit function theorem for (1) leads to the condition that

¢ behaves locally like a continuous mapping. The problem then
is t§ obtain from this "loéal knowledge" information about the
global behavior of &. The central concept is a general "contin-
uation property" which in turn is equivalent to a so-called "path-
lifting property". The latter assures that for a continuous path
P in X a path g in Y can be found such that p and ¢
are point-wise related under ¢. The resulting theory resembles
somewhat (and was in part influenced by) the theory of covering
mappings in algebraic topology.

" After introducing somé notatiéns in Section 2, Section 3
presénts the main theoretical results; then, in Section 4, these
results are applied to the case of the equation (2); and in
Seétion 5, to that of (1). The results of Section 4 contain a
number of new global existence theorems for (2) and also include
the wellknown Hadamard-Levy theorem (see [6] and [8]) as well as
a recent generalization by Meyer [9]. Section 5 essentially
dovers and extends the results of Ficken [57.

.AlthOugh some of the specific applications in Secti&ns 4 and

5 use the implicit function theorem, the main results do not depend
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on thé way the local invertibility is assured, and hence, corre-
sponding results based on.other local solvability theorems can
conceivably be phrased.

At this point, I would like to express my heartfelt thanks
to my good friend and colleague Professor James M. Ortega of the
University of Maryland for his invaluable critical comments and

many helpful discussions during the preparation of this paper.
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2. Notations

Unless otherwise noted, X and Y shall always denofe
Hausdorff topological spéces. As usual, a path in the set
Q « X shall be a continuous mapping p: J = [0,1] < Rl - Q, and

two paths p and gq in Q are called equal, in symbols

n

o) g, if there exists a "parameter transformation" 71, i.e.,
a continuous, strongly isotone mapping 7: J - J with 7(0) = O,
7(1) = 1, such that ﬁfT(t)) = gq(t) for t € J. For any path p
ih Q the reverse path p is defined by p(t) = p(l-t), t € J,
and for any ao,f with O < o < B <1 the path g given by q(t)
= p(att(B~a)), t € J, is said to be a segment of p. Finally,
if p and q are paths in Q with p(l) = g(0), then the con-
catenation pHgq is defined fy pq(t) = p(2t) for 0 < t < 1/2 and
By(t) = q(2t-1) for 1/2 < t < 1.

The set of all possible paths in a set Q € X under the above
equality definition will be denoted by QP(Q). A subset ¥% C;¥KQ)

is called admissible if it is closed under reversal, segmentation

and finite concatenation of paths. For example, the set of all

‘piecewise continuously differentiable paths in a Banachspace X

is admissible. For any ﬁPo C'P(Q) a set Q C X is F%—path—connected

if any two points x,,x., € Q can be connected by a path from T%.

1’72




A T%—path—component of Q is a maximal 7%—path—connected
subset of Q. If ?6’ is admissible, then Q can be partitioned
into disjoint ‘Yz—path-components. A set Q is said to be local-
ly- T%-path-connected if for each x € Q and any (relative) neigh-
borhood’U(x).of X in Q there exists a (relative) neighborhood
Uo(x)cz U(x) of x in Q which is 7%—path-connected.

-Eor given }¥b c:'P(Q) a 7%-path—homotopy on a set Q € X
is defined as a continuous mapping g: J X J < R2 - @ with the
property that for fixed so,tO €J, g(so,.) and g(.,to) are paths

of"¥%. As before, two 'Vo—path—homotopies gl and g2 in Q

certain parameter transformations ™1 and oo We denote this
again by 97 = 9,-

Finally, given a relation ¢ € X x Y from X to Y, we shall
use the notations (x,y) € 8§ and x ¥ y interchangeably. The set
D(3) = {x € X | x & y for some y € Y} is the domain of ¢ and for
any Q € X we define $[0] = {y € Y | x ¢ y for some x € Q n D(@)1.
Then, $[x] = ¥[D(%)] = R(%) is the range of &. If Q = {x] we
shall also write %[x] instead of ¥[{x}]. As usual, the relation

st = {(y,x) €Y xX | (x,y) € &} is called the inverse of 3&.

' are said to be equal if gl('rl(s),'rz(s))= gz(s,t) for s,t € J and
1.
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3. Local Mapping Relations

The following definition introduces the local solvability
property; as mentioned in the introduction, this property repre-
sents an abstract version of the assumption that a "local" impli-

cit function theorem is available for the solution of (1).

3.1 - Definition: A relation ¢ € X x Y is said to be a local

mapping relation, or to have the local mapping property, if

D(%) = X, and if for each (xo,yo) € & there exists an open neigh-
borhood 1U(xo) of x0 in X and a relatively open neighborhood
V(yo) of Yo in R(%) such that the restriction ¢ = $ N (U(xo)

X V(yo)) is a continuous mapping from U(xo) into V(yo).

In order to shorten the notation we shall call the neighbor-

hoods U(xo),v(yo)va pair of canonical neighborhoods of (xo.yo) € ¢

~ and the mapping ¢:'U(x0) - V(yo) the corresponding canonical mapping.

It may be noted that the condition D(¢) = X is not particularly

essential and was mainly introduced for the sake of simplicity.
If F: Y - X is a continuous map from Y onto X, then the

graph of F,

(3) r.={ly,x) €Y xXx | x = Fy}l,

is clearly a local mapping relation in Y x X, and for any (y.,Fy)

€ I% the sets Y and X are a pair of canonical neighborhoods.



considerably more interesting is the question when the inverse
graph FF_l is a local mapping relation,.i.e., when the equation
Fy = x has locally a continuous inverse. This will be discussed
in Section 4. More general is the case of the relation defined by
(1) between x and vy fér fixed 2z; this will be the topic of
Section 5.

Generally, we are concerned with the question when the exis-
tence of local solutions guaranteed by the local mapping property
assures the existence of "global" solutions. The tool for study-
ing this problem will be the following "continuation" concept.
Given a local mapping relation ¢ ¢ X x Y and some path p € 'P(X),
we are interesteé in finding "solutions" y € Y of p(t) ¢y, t € J
= [0,1]. Suppose thaf Yo € Y is known with p(0) ¢ Yo and that
¢ is the canonical mapping corresponding to (p(O),yO). Then
g(t) = o(p(t)) is uniquely and continuously defined for some inter-

val 0 < £ < ¢. Since q(0) =y we can call g a "continuation"

OI

of the initial solution . Yo of the problem p(t) ¢ y, t € J for

small values of t. If g is still defined for tl > 0, then the

process can be repeated with Yy, = q(tl) in place of Yo The
question now arises whether it is possible to "continue" the solu-
tion for all t in J, i.e., whether there exists a path q € X?(Y)

such that p(t) ¢ gq(t) for t € J and g(0) = y Without additional

On



assumptions about ¢, this is, of course, not the case. But it

_turns out that when a path g of the described type does exist

for certain paths p and for all corresponding initial solu-
tions, then a number of interesting results can be proved about

the global behavior of &. Accordingly, we introduce the follow-

ing condition:

3.2 - Definition: A local mapping relation ¢ € X x Y is said

to have the continuation property for a given set 'Po c WQ(X)

if for any p € 'PB and any continuous function q: [0,€) ¢ J - ¥
with p(t) & gq(t) for t € [0,£) there exists a sequencem{fk} c [0,¢€)
with %ig tk = € such that %i& q(tk) =y and p(f) & 9.

Before showing that this condition indeed allows the con-

'tinuétion process to be carried out until t =1, it is useful to

introduce the following terminology:

3.3 - pefinition: A local mapping relation ¢ €« X x Y is said to

have the path-lifting property for a set ’PO C P(X) if for any

p € ’y% and any Yo € & [p(0)] there exists a path g € WRY) such

that g(0) = y. and p(7) & g(7(t)) for t € J and some parameter

0
transformation 1. We call g a lifting of p through Y, and

write p $ q.
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This definition represents a simple modification of the
lifting concept used in the theory of covering maps in algebraic

topology. . The announced result can now be phrased as follows.

3.4 - Theorem: Let ¢ <€ X x Y be a local mapping relation.
Then ¢ has the path-lifting property for (F% (:ﬁp(x) if and

only if ¢ has the continuation property for ’PO.

Proof: Clearly, the path-lifting property implies the continua-

tion property. Suppose, therefore, that ¢ has the continuation
property\for"Po. If p € m% and Yo € Y with p(0) ¢ Y, are given,
the earlier described continuation process assures the existence
of a continuous fﬁnction'q: [0,t) ¢ 0 = Y with q(0) = Yor p(t)
% gq(t) for t € [0,£) and some £ € (0,1]. Let € Dbe the maximal
value with this property in J. By assumption, a sequence
{t. } ¢ [0,t) exists with lim t = €, lim q(tk) = ¢ and p(€t) ¢ 9.

k

K- K-

If U(p(t)) and V(9) is a pair of canonical neighborhoods and ¢
the corresponding canonical map, then p(t) € U(p(€)) for
t € [€-6,£] and q(tk) € V(9) for large k. Hence, by construction
and continuity of q it follows that q(t) = o(p(t)) € V(§) for
t € [€-5,€) and therefore, because of the continuity of ¢,
lim g(t) = lim ¢(p(t)) = ¢(p(€)) = 9. Thus, by setting g(t) = 9,

t-t - t-t
g is continuously defined for 0 < t < €. If £ < 1, then also p(t)
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€ U(p(t)) for t € [€,€+6'), &' > 0, and, therefore, qg(t)

= ¢(p(t)) is defined up tO'some‘larger t than €; and this
contradicts the-maxiﬁality of € in Jﬂ Therefore, we must
have € = 1; and this proves that & has the path-lifting
property for PO'

We turn now to the consequences of the path-lifting pro-
perty. A first result states that a lifting of a path q 1is
uniquely determined by the initial point Yqe This fact is
hardly surprising in view of the continuation idea behind the

path-1lifting concept.

3.5 - Theorem: Let & € X x Y be a local mapping relation with
the path-lifting property for QPO C.’P(X). If q;.q, € "P(Y) are
two liftings of p € ’PO with ql(O) = q2(0) = Yqr then d; = gy
Proof: By assumption we have p(t) @ qi(Ti(t)), t €J, i=1,2,

where 71,72 are certain parameter transformations. Introduce

the set J. = {t € J | q, (1, (£)) = q2(¢2(t))}, then 0 € J

0 0

implies that € = sup{t | t € JO} is well-defined and by continuity

we have t € Jo. Suppose that € < 1, and let U(R), V(yl) be a

pair of canonical neighborhoods of ® = p(t), ¢

1= ql(Tl(ﬁ)) with

the corresponding canonical map ¢. Then p(t) € V(R) for

t € [€,£+6] with 8§ > 0 and hence ql(Tl(t)) = p(p(t)) = qz(Tz(t))
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for these +t. This contradicts the constrﬁction of € and hence

we have £ = 1 and therefore d; = q,-

As a first application we obtain the following result!?

3.6 - Theorem: Let & € X X Y be a local mapping relation with
the path-lifting property for the admissible set '?B C_’P(X).
Assume further that X is locally ’Po-path—connected and let

X = (.J X be the decomposition of X into its ’PO—path—compon—
ents?EMThen, each one of the partial relations @u =& n (Xu X Y)
is a local mapping relation with the path-lifting property for

’YL = ’Y% N ’P(Xp). Moreover, for fixed u the cardinality of

the set Qu[x] is independent of the choice of x € xu

Proof: 1In order to show that D(@u) = Xu let (xo,yo) € @u and

consider any point x € Xu. Then there exists a path p € '¥L

connecting x and x and hence also a path q € ’P(Y) with q(0)

0
=Y, and p ¢ q. Hence, x % q(1l) and therefore x € D(@u). Let
now U(xo),v(yo) be a pair of canonical neighborhoods under &
and ¢ the corresponding canonical map. Then there exists an

open qPo-path-connected neighborhood Uo(xo)<: U(xo) of x in X.

0
But then Uo(x0)<: Xul'is open in Xp and Uo(xo),v(yo) constitutes
a pair of canonical neighborhoods of (xo,yo) € @u with the restric-

tion ¢ | Uo(xo) of ¢ as corresponding canonical map. Thus,
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Qu is again a local mapping relation and clearly @u inherits
from ¢ the path-lifting property.

To prove the last part of the statement, let XO'Xl' € Xu be
any two points. Then there is a path p € %L connecting them and
hence for arbitrary yo € @u[xoj there exists a unique lifting
a e'P(Y) of p through Yo Thus, gq(l) € @u[xl] and by Theorem
3.5 the correspondence Yo = q(l) is for fixed p a mapping ™
from @p[xoj into éu[xl]. This mapping is injective; in fact,
if q; E’Q(Y), i =1,2 are liftings of p with ql(l) = q2(l).
then the reverse paths ai are liftings of the reverse path 5

and hence by 3.5 it follows that 51 2 q and therefore ql(O)

2
= q2(0). If the reverse path 5 is used to define in the same
manner a mapping mw from éu[xl] into Qu[xo], 3.5 implies again
that w = w ~. Hence, altogether, m is bijective and @u[xoj
and @u[xl] have the same cardinality. This completes the proof.

One of the central results of our theory is the fact that
local mapping relations with the path-lifting property for }QO
also lift41Qo—path homotopies.

The proof of the following theorem is an adaptation of a

proof by Schubert [10] for covering mappings.

3.7 - Theorem: Let $ € X x Y be a local mapping relation with the

path-lifting property for _Y% CZ’P(X). For a F%—path homotopy

h in X and a path qO‘E ”P(Y) with g(.,0) & qO there exists a
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Wz(Y)-path homotopy h in Y and parameter transformations

' Ty such that g(s,t) ¢ h(Tl(S),Tz(t)), s,t € J, and

"1
h(.,0) = qo. Moreover, if K 1is any other ’P(Y)—path homotopy
in- f with the same préperties, then h £ h.

Proof: For fixed s € J, pskt) = g(s,t), t € J defines a path of
’F% and hence there exists a unique path-qs GAP(Y) with P $ qg
and qS(O) = qo(s); Let h be any ’V(Y)-path homotopy in Y
with the stated properties. Then, after a suitable parameter

transformation, we have h(s,0) = qo(s)-for any s € J and hence

by 3.5, h(s,.) = dr S € J. This shows that h 1is uniquely

.determined up to parameter transformations. Therefore, if the

mapping h: J x J ¢ R2 - Y is defined by h(s,t) = qs(t), s,t € J,
then all that remains is to prove the continuity of h on J x J.

Suppose g is discontinuous at (s_.,t.) € J x J and that

0" 1

to is the infimum of all those t € J for which g is discon-

tinuous at (so,t). Set Xq = g(so,to) and Yo = h(so,to), and let

U(xo), V(yo) be a pair of canonical neighborhoods and ¢ the
corfesponding canonical map. Since h is continuous on J x J,
there exist open neighborhoods J(so) and J(to) of g and tO
in J such that g(J(so),J(tO)) c U(xo). We distinguish now two

cases: .

Case 1l: t. = 0. 'Then, Yo = h(sO,O) = qo(so) and because of the

0
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C s 0 . .
continuity of ¢ there exists an open neighborhood J'(so)

of S in J such that qO(J'(sO))c: V(xo). It is no restric-

- tion to assume that J'(so) = J(so). This means that ¢(g(s,0))

= qo(s) = h(s,0) for (s,0) € J(so) x J(0) and therefore ¢(g(s,t))

= w(ps(t)) = qs(t) = h(s,t) for (s,t) € J(so) x J(0). With og

also h is continuous at all points of J(so) x J{(0) and this

contradicts the construction of t0 = 0.,

Case 2: tO > 0. Since ps (.) is continuous in t we can choose

0
t' < t, such that t' € J(t.) and that h(s_,t') =g (t') € V(y.).
. 0 0 0 s0 0
By assumption h 1is continuous in both variables at (so,t') and
hence there exists a neighborhood J'(so) of S in J, which we

can assume to be equal to J(so), such that h(J(sO),t') c V(yo).
But then 3.5 implies again that ¢(g(s,t)) = m(ps(ﬁ)) = qs(t)

= h(s,t) for each s € J(so) and all t € J(to). This means again

‘that h is continuous in an entire neighborhood of (s_.,t.) in

0" 0

contradiction to the construction of t This completes the

O.
proof.

This theorem permits us to prove the following "global"
result for local mapping relations. We call the space Y X%-
simply-connected if it is path-connected under ’F% and if any

two paths of ]20 with the same endpoints are T%—homotopic.
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3.8 - Theorem: .Let ¢ C X x Y be a local mapping relation with
the path-lifting property for the admissible Set.’F% - ]Q(X) and
'suppose fhat X is WQo—simply-connected and locally ’¥%-path-
connected. Then theré exists a family of continuous mappings
Fu: X - R{$) with Fu(X) = Qu, p € M such that R(%) = L)Q and

MEM W

x ¢ F x, 8x] = {F x} for each x € X. The index set M has
1) b WEM

the same cardinality as the sets $[x] (see 3.6).

O,x € X we generated in the proof of 3.6 a

bijection m Dbetween @[xoj and ¢[x] as follows: Let p be a

fixed path connecting x and x and Yq € Q[xoj any point; then

o
there exists a unique lifting g of p with initial point Yqr
and n(yo) = gq(l) defines the desired bijection from @[xoj onto

$[x]. We show that when X is '¥B—simply connected,then for

given Xye X € X the bijection n = T x from @[xoj onto $[x] does

0
not depend on the choice of p. Let p' Dbe any other path connec-

ting X, with x and gq' the lifting of p' with initial point

Yq € @[xojg There exists a homotopy y in x with g(0,t) = p(t),

19(l.t) =p'(t), (t € 3), g(s,0) = Xq g(s,1) = x, (s € J). Hence,

3.7 impliesbthe existence of a unique path homotopy h in Y for
which--after a suitable parameter transformation--g(s,t) & h(s,t)

and h(s,0) = yo, (s,t € J). Therefore, it follows from 3.5 that

i

h(0,.) = q, h(1,.) £ g' and hence that y = q(1) = h(0,1) and
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y' = q'(lf = h(l,1). But then, x = g(s,1) ¢ h(s,1l) for s € J,
£ogether with the'continuity of h(.,1), and the local mapping
property.of ¥ necessarily implies that y = y'.

Now let x, € X be a fixed point and Q[xo] = {yu}uGMf By 3.6
the cardinality of the index set M is invariant under changes of
Xq For given yu € Q[xoj there exists for each x € X a unique
y = n(yu) € §[¥] where m = T x is the bijection constructed above.

0
n(yu)}, then, because of the bijectivity

Let Q = {v € R(3) | ¥
of m, it follows immediately that every y € R(%) must be contained
in at least one , i.e., that LJQ = R(9%).

Qu = (%)

Cléarly, the correspondence x € X - ¥y = . X(yu) € Q defines

0
a mapping Fu: X - R($) with FH(X) = Qu. In view of the properties

of m we then have x ¢ F@X' and ¥[x] = {nx . It remains

XOX 0

to be shown that Fu is continuous as a mapping from x into R(}).

x(yu)}uEM

For this we prove first that locally Fu coincides with the canon-
ical mappingé. Let € X and § = Fuﬁ be giyen and let U(R),V(Y)

be a pair of canonical neighborhoods and m\ the corresponding
canonical map. Since X is locally ‘y%—path connected, it is no
restriction to assume from the outset that U(R) is 1%—path connected.
Let x € U(R) be any point and y = ¢(x) € V(§). There exists a

path p" ¢ 'Fb from ® to x  in U(R) and hence, if p' is any path

, ~ _
from XO to R, the concatenation p'p" defines a path p from
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X4 to x. Now let q' Dbe any lifting of p' with init+ial point

yu, then q' (1) F x = § and, since q"(t) = ¢(p"(t)) (t € J) defines

o
a lifting of p" with initial point ¢, it follows that the con-

Fan)
catenation q'qg" provides us with a lifting q of p with initial

point yu. But then by definition of F , we have F x = q(l) =y
i

u?
= ¢(x) as stated. The continuity of F is now an easy consequence.
: W

In fact, if V(¢) is any open neighborhood of ¢ in R_, then so is

@I
VO(9) = V(9) n ¥(¢) and hence, by continuity of m,'w(_l)

(-1) (-1) (-1)

(Vo (9))
(v, (9)) > %,

is open. Since F (V(y)) o F (VO(9)) 29

this shows that Fu is indeed continuous at R.
Note that in general the Qu are not disjoint as the simple
example shows: X = [0,2] ¢ Rl, Y =[0,3] c R1 and §[x] = {2-x,3-x1,

0 <x 5V2. Here we have M = {1,2}, Q, = [0,2], Q

5 = [1,3] and

1
le = 2-x, F2y = 3—xf

~ There is.one impo:tant case when the Qu are disjoint and in
fact when they are the /F%-path components of Y. We shall discuss
this case in the next Section.

| We conclude this Section with two somewhat different results.

The first provides a sufficient condition for a relation to be a
local mapping relation with the path-lifting property, and the

second uses the path-lifting property to determine the domain of a

local mapping relation.
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The following definition represents an extension of the
definition of a covering map;Aaccordingly a corresponding name

is used.

3.9 - Definition: A relation $¢<X x Y with D(3%) = X is called a

covering relation if for eaéh X E'X there exists an open neighbor-
hood U(x) such that Q[ﬁ(x)]= p%&vu where the Vu are disjoint
(relatively) open sets in R(¢) and for each p € M the restric-
tion ¢u = ¢ N (U(y) x Vu) is a continuous mapping from U(x) into

Vu. "U(x) is called an admissible neighborhood of x.

3.10 - Theorem: A covering relation $ ¢ X x Y is a local mapping
relation with the path-lifting property for ’P(X).

Proof: Let (xo,yo) € 3, U(xo) an admissible neighborhood of X,

and '@[U(xo)] =

<4V , where the V are as stated in 3.9. Then,
€M W B

Y, €V for exactly one p. € M and U(y.),V is evidently a pair
0 kg 0 0 "
of canonical neighborhoods of (xo,yo) € %, i.e., & is a local

- mapping relation.
Let now p € "P(X) be any path. Since p(J) is compact, there

exists a partition 0 = t0 < tl‘<...< tk+l = 1 such that p(t) € Ui

1 where Ui<= U(p(ti)), i=0,1,...,k are admissible

neighborhoods of p(ti). For given Yo € 3[p(0)] we use induction

for t. < t < t.
i— = i+

. to construct the lifting g of p through Yqe Suppose ¢ has

already been defined for 0 <t < t,

i+ £ > 0. Then, q(t,) € @[p(ti)l




c:4§[Ui] = :E&Vu and q(ti) belongs to exactly one Vuo. Since
® =& n (U, xV ) is a continuous map from U, into V and
] i U‘O . ’ 1 u‘o
since p(t) € Ui for ti 5At < ti+l' it follqws that g(t) = wu(p(t))
(ti <t < ti+l)represents a well-defined continuous extension of

q, i.e., g is 'now defined for 0 <tcx ti This completes the

+1°

induction, and, therefore, ¢ has the path-lifting property.

3.;1 - Theorem: Let % < YO X X be a local mapping relation on
X0 XY, wherg-XO C X is open in %, and X is %%-path connected
for a set ¥% C WQ(X) which is closed under segmentation. Suppose
further that & has the continuation property for 'V% n /?(XO).

Then ﬁ = X.

0
Proof: Let (xo,yo) € §, x € X be any point, and p € 190 a path
between X, and x. Then, J = {t e g | plr) € XO} is not empty

and since X is open in X, J

o is open in J. If J is a

0 0

proper subset of J, there exists a £ € J such that [0,€) © JO

_but € § J,. For any t' € [0,€) the closed segment of p from p(0)

L s L} 3 )
to p(t') is a path p in ‘FO n "P(XO) and hence p can be
lifted into Y. Since t' was arbitrary, this implies the exis-
tence of a continuous function g: [0,8) € J - Y with p(t) & q(t)
for 0 < t < €. Therefore, by the continuation property, there

1 ] = 1.1 =
exists a sequence [tk} ¢ [0,¢) such that lim t = ¢, Lim ql(e ) =y



and p(t) ¢ ¢.

and hence we have JO
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But this implies that ¢ ¢ Jge

against assumption,

= J, and therefore x € X, i.e., X. = X.

0 0



v
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4., Applications to Equations Fy = x

Throughout this section we consider a map F: Y - X from Y
onto X and the corresponding inverse graph

F—l
F

{(x,y) €exX x Y | x = Fy}

The following theorem provides an answer to the question

when F;l is a local mapping relation.

4.1 - Theorem: Given a mapping F: Y - X from Y onto X, the
inverse graph F;l is a local mapping relation if and only if
F 1is open and locally\one—to-one.
Proof: Let F;l be a“local mapping relation and consider for some
(xb,yo) € F;l a pair of canonical neighborhoods U(xo),V(yO) and
the corresponding canonical map ¢. Then for any x € U(xo)
there is exactly one y € V(yo) such that Fy = x, i.e., Flv(yo)
is injective. If Q< Y is open and Yo € 'Q, then also Vo(yo)
= V(yo) N Q is open in. Y and Uo(xo) = @_l (Vo(yo)) < tﬂxo)
is open in U(xo) and thus in X. Therefore, F(Vo(yo))
= (FIVO(yO))VO(yO) = (FlVo(yo))¢(Uo(x0)) = Uo(xo) and hence F{(Q)
is 6pen in X.

Conversely, let F be open and locally one-to-one. Then,

for any (yo,xo) € T;l there exists an open neighborhood V(yo) of

Yq in Y such that FIV(yO) is one~to-one. Hence,'FV(yo) = U(xo)
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with X, = Fy, is open in X and (F‘V(yo))"1 is an injective and
continuous mapping from U(xo) onto V(yo).

For the following we shall assume that F not only satis-

fies the conditions of this theorem but is even a local homeo-

morphism in the usual sense, i.e., that for each y € Y there

éxist open neighborhoods U(Fy), V(y) of Fy and y in X and

Y, respectively, such that F|V(y) is a homeomorphism from V(y)

onto U(Fy). For local homeomorphisms, theorem 3.8 can be strength-
ened; more specifically, it turns out that in this case the sets

Qu occurring in that theorem are the path components of Y.

4.2 - Theorem: Let F: Y - X be a local homeomorphism from Y
onto X and APY C "P(Y), 'Px - 'P(X) admissible sets such that
F'F& C'}?x and that X is ¥%—simply connected and locally 'p&;path
connected. Suppose that ¢ = T;l has the path-lifting property for
WQX and that every $-lifting of a path from 'F& is contained in

VQY' Then, for each 'F&—path component Y of Y, F[Yu is a

homeomorphism from Yu onto X.

Proof: In comparison to 3.8 this theorem states mainly that

Q =Y . Yet it is easier to prove 4.2 directly without reference

: n _
Given a Fy_path component Yu let Yy € Yu and X5 Fyo be
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fixed, and x € X an arbitrary pointf If p € ’F§ is a path

" connecting X, and x and q € 'p(Y) a ¢~lifting of p with
q(0) = Yqe then q € 7?§:and hence necessarily gq € ’F; n ’p(Yu).
Therefore, Fq(i) = p(l) = x and q(l) € Yu implies that x € FYu
and thus that FYu = X. 1In order to show that FlYu is injec-
tive, suppose that Fy' = Fy"‘= x for y' # y" in Yu and some

X € X; Then, there are paths q',q" € ff; N 77(Y) connecting Yo
with y', and Yo with y" respectively, and hence p'(t)

= Fq'(t),p"(t) = Fq"(t), t € T defines two paths p',p" € F ?&

C W?X,both of which connect X, and x. Therefore, there exists
a w?x—path homotopy g in X with g(0,t) = p'(t),g(l,t) = p"(t),
g(s,0) = xo,g(s,l) = x,(t,s € J) and 3.7 implies the existence of
a path homotopy h in Y for which--after suitable parameter

transformations--Fh(s,t) = g(s,t),h(s,0) =y s,t € J. Hence,

0’
h(0,.) = g',h(1,.) £ g" and thus h(0,1) = x' # x" = h(1,1), while
on the other hand Fh(.,l) = ¥. This contradicts the local homeo-
~morphism property of F, and thus F|Yu‘is injective. Finally, to
show that (F|YM)—l is continuous, consider y € Yu and x = Fy and
a pair of canonical neighborhoods U(x),V(y) of &. Then, there
exists a ?%-path—cdnnegted neighborhood Uo(x) C U(lx), i.e.,

Vo(y) = (F]U(y))—on(x) c V(y) is 'PY-path connected and hence

contained in Y. Thus, F|Yu is a local homeomorphism from Y
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onto X and hence Fle is open. This completes the proof.

In many applications the following corollary will be useful:

4.3 - Corollary: Let F: Y - X be a local homeomorphism and
suppose that Y is ’P(Y)—path connected and X 1is ’?(X)—simply
connected and locally 'F(Xj-path connected. Then F is a homeo-
morphism from Y onto X if and only if T;l has the 'P(X)-
continuation property.

The necessity of the continuation prgperty added in this
result is self-evident, and the sufficiency follows directly from
4.2 since XQ(X) and WP(Y) satisfy the conditions placed there on
'PX and %Q, respectively.

For the case of mappings between normed linear spaces we can
combine this result with Theorem 3.11 and obtain the following

interesting result.

4.4 - Theorem: Let F: DC W - V be a local homeomorphism from an
open, 'P(W)—path-connected subset D of the normed linear space
W into another such space V. Then F 1is a homeomorphism from
D onto V if and only if T;l has the 'F(F(D))—continuation
property.

The necessity is again evident. For the proof of the suffi-

ciency set Y = D and XO = F(D). Then, XO is open and 'P(X)—path



connected in X = V. Because of the 'P(XO)-continuation property

of T;l, 3.11 therefore implies that XO = X, and thus the remain-

der of the statement is a direct consequence of 4.3.

The continuation property is an operational condition that
may be difficult to verify in concrete situations. Fér compact
mappings of a normed linear space into itself there exists a
fairly simple condition which assures the continuation property

-1

for VFF . This condition is a modification of the so-called

coerciveness condition used in the theory of monotone mappings.

4.5 - Definition: A mapping F: D ¢ V -+ V with domain and range

in a normed linear space V is called norm-coercive if for any

v

y =2 0 there exists a closed, bounded set D < D such that [IFx| > vy
: Y

for all x € D ~ DY-

Note that for D = V, F 1is norm-coercive if and only if

[Fx| = = as x| - =.

4.6 ~ Theorem: Suppose that G: DC V - V is sequentially compact
on the open, FKV)—path—connected set D in the normed linear
space V, and that F = I - G is a norm-coercive local homeomorphism.

Then, F is a homeomorphism from D onto V.

Proof: In view of 4.4 it suffices to show that T;l has the

WZ(F(D))-continuatiOn property. Let p € "P(F(D)) be given and



- 27 -

q: [0,t) ¢ J - D a continuous function with Fq(t) = p(t) for
0 <t <®. Since p(J) is compact, y = pax p(t) exists and by
norm-coerciveness there is a closed bounded set Dy < D such
that ||[Fx]| > y for all x € D ~ Dy' But then necessarily q(t) € DY
for t € [0,£). Hence if {t#} C [0,t) is any sequence with %ig
t, = €, then [Gq(tk)} c GDY has a convergent subsequence. Sup-
pose this subsequence is again denoted by {Gq(tk)} and that
1im Gq(t) = §'. If lim Fq(t) = lim p(t) = p(£) = § then

lalt) = @ + 990 < llalg) - ealt) - 91 + Jlealt,) - 9|

= IFqe,) - 9l + lleale) - 9|

and hence %ig q(tk) = ¢ + ?'. Because {q(tk)} c DY and DY is
closed, we have ¢ + ¢' ¢ DY € D and hence by continuity F(y + y')
= p(t) which proves that T;l indeed has the 'p(F(D)) continuation
property.

For finite dimensional V this result can, of course, be

simplified considerably.

4.7 - Theorem: Let V Dbe a finite dimensional normed linear
space and F: D V -+ V a norm-coercive local homeomorphism on
the open, Y?(V)—path-connected set DC V. Then, F 1is a homeo-
morphism from D onto V.

The proof is a simple adaptation of that of 4.6. In private
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discussions, J. Ortega noted that in this case the norm-coercive-

ness is also necessary. In fact, if F: D ¢ V - V is a homeomorphism

from D onto V and S = §(0,y) = {x € V | |Ix|| < vy} for some

vy > 0, then Dy = F-lS is closed and bounded, and y € V ~ D
implies that Fy € S, or ||[Fy|l > v, i.e., F is norm-coercive.

The local homeomorphism condition in the last theorems can,
of course, be replaced by assumptions guaranteeing the validity
of some local inverse function theorem. For instance, let us
consider the following version of a wellknown theorem of Hilde-

brandt and Graves [77:

For the mapping F: D € W - V between the Banachspaces W,V
suppose there exists a linear operator A: W — V with
bounded inverse A_l € L(V,W), such that
(2) Py, - Py, - Aly, -yl < ally -y, | < 1875y -y, 1
2 1 2 71 - 271 2 71
for all yl,y2 from some ball §(yo,y) C D. Then, for any
Ht

X € §(Fyo,o), where o = (|A - «) vy, the equation

Fy = x has a solution Y, € §(yo,y) which is unique in
that ball and which varies continuously with x.
The proof is wellknown.

In order to apply our previous theorems we need to establish

_ . . . -1
conditions which assure the continuation property for T_~. A

rather simple approach along this line leads to the following
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theorem essentially due to Ehrmann [4]:

4.8 - Theorem: Let F: DC W - V be a continuous mapping from the
open, ]Q(W)-path-connected,subset D of the Banachspace W into
the Banachspace V. Suppose that for each y € D there exists a
linear operator Ay: W - V with bounded inverse A;l € L(V,W)
such that (2) holds for all Yyr¥, from some closed ball §(y,yy) €D
(with A and o replaced by Ay and ay. respectively). If
o, = (HA;IH_l - “y)Yy-Z o >0 for y € D, then F is a homeomor-
phism from D onto V,

From the inverse function theorem it follows that F 1is a
local homeomorphism, and since o > 0 is independent of y € D,
it is easily verified that T;l is a covering relation. Thus,
by 3.10 F;l has the path-lifting property and hence the result
is a direct consequence of 4.4.

Instead of the assumption that ¢ is independent of vy, we
can, of course, also use the norm-coerciveness as a tool for assur-

ing the continuation property. For example, by using the inverse

function theorem in its conventional form for continuously (Frechet)-

It

differentiable operators, (i.e., by setting A F'(y) in the above

version) we obtain the following corollary of 4.7.

- 4.9 - Ccorollary: Let V Dbe a finite dimensional normed linear
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space and suppose the mapping F: D C V - V has a continuous,
nonsingular derivative on the open set D« V. If F is norm-
coercive on D, then for gach 12(V)-path component Du of D,
F Du is a Homeomorphism from Du onto V.

We conclude this section by showing that also the following
wellknown theorem of Hadamard [6] and Levy [8] (see, e.g.,

Schwartz [11]) can be proved by means of our results.

4,10 - Theorem: Let F: W - V be a conttnuously (Frechet)-differen-
tiable map from the Banachspace W into the Banachspace V, and
suppose that for all y € W, F'(y) has a bounded inverse (F'(y))_l

€ L(V,W)'such that H(F'(y))_lﬂ < v. Then, F is a homeomorphism
from W onto V.

Proof: By the standard inverse function theorem we know that F
is a iocal homeomorphism from W onto the open subset FW of

V. Moreover, F is again continuously differentiable and we

have for all y € W

(3) (FLEy)) = (' (y)t

[} ]
Let A?W - ')Q(.W) and 'PV C "Q(V) be the classes of all piecewise

continuously differentiable paths in W and V, respectively,

and "\\Q\', = T)V n ’P(FW). Clearly then, F'P;’ - '%\'7 Conversely,

if Fq(t) = p(t) for t € J, i.e., if g € V(W) is a o -lifting

A
of p € T?V' then clearly also g 1is again piecewise continuously
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differentiable and because of (3) we have in each continuity

interval of o)
-1
(4) q'(t) = (F' (q(t)) "p'(t)
. ]
Hence, we have q efpvvland, therefore, the admissible sets of
1)

WQW and qQV’ satisfy the conditions of Theorem 4.2. In order

- Ay
to show that FFl has the continuation property for WQV let

p € ib;.and g: [0,£) € J - Wbe a continuous function with Fg(t)
= p(t) for 0 < t < €. Then, by the same argument as above, g
is piecewise continuously differentiable on [0,f) and (4) holds
on the continuity intervals of p. Let {t 1 e [0,t) be any
sequence with ﬁim tk = €. It is no restriction to assume that

{tk] is increasing, then we have for k < j

(5) \lq(tj) - q(tk)ll < lg' (s) 1l ds <

[E
t

iJ P (as) T Ipt(s) ] ds < v maxlet ()] e - ]
k

which shows that {q(tk)} is a Cauchy sequence and hence convergent.

Thus, because of the continuity of F on W it follows immediate-
A

ly that T;l has the continuation property for WQV' Since FW 1is

open in V, 3.11 therefore implies that FW = V, and now the result

follows directly from 4.2.
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Recently, Meyer [ 9] extended this theorem to the case where
H(F'(y))~ln is allowed to go to infinity at most linearly in

llyll. The following theorem is a modification of Meyer's result.

4,11 - Theorem: Let G: V - V be compact and continuously differ-

entiable on the Banachspace V. Set F = I - G and suppose that

F'(y) has a bounded inverse (F'(y))—l € L(V,V) such that

H(F'(y))—lH < allyll + 8 for all y € V. Then, F is a homeomorphism

from V onto itself.

Proof: We use the same notation as in the proof of 4.10, of course,
with W = V. Let p € ]5\‘7 and let gq: [0,t) ¢ J - V be a continuous
function such that Fg(t) = p{t) for 0 < t < £, Then, as in the

case of (5), we find

: t . t -1
late) = a@ll <] la' ) as < [ [E @& e (o) ds

. t
<Bt+ [ &lats) - q0)] as

)

where

8= @lla@ ] +8) max lpr(s)ll L & = o max flo*(s) |

The wellknown Gronwall ineqgquality now implies that

LAl

la(t) - g | < Bty Lt e o0,

—
A

o

i.e., for any sequence {tk} < [0,8) with %im t, = t it follows
—00
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that {q(tk)] is bounded. Because of the compactness of G, there
exists a convergent subsequence of {Gq(tk)3. If this subsequence
is again denoted by {Gq(tk)? and if %i& Gq(tk) = ¢', then with

%ig Fq(tk) = kig p(tk) = ¢ it follows that
lale) - 9+ < Nalg) - Ga(t,) - oIl + lleg(t,) - 9|

- A
which proves that T ! has the continuation property for 7?&.

The remainder of the proof is identical to that of 4.10.
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5. Applications to Equations F(x,y) = 0
In this section we shall discuss a few possible results
about equationsg of the form F(x,y) = O where F: Dc X x Y -~ Z

and X,Y,Z are Banachspaces. Let

(6a) 8, = {{x,y) €D | F(x,y) = 0} ,

then the relation to be considered is the restriction

(6b) 8=, 0 (D(F) x R(3))
There are various possibilities of assuring that & has
the local mapping property. We shall restrict ourselves to those

derivable from the classical implicit function theorem, and use

that theorem in the following form:

et F: DX X Y - 2 be continuous on D and F(xo,yo) =0

at (xo,yo) € D with §(x0,o) X §(y0,po) < D. Suppose
A: Y » Z is a linear operator with bounded inverse A
€ L(z,Y) such that
IF(x,y,) - F(x.'yl) = Alyymy ) < aplly -y |
< 17y ,ey, !
for x € §(x0,c) and ¥ ¥, € §(yo,p0). Finally, let og £ ©
be such that ”F(X'YO)H.S (HA-l“—l - ao)po for x € S(xo,oo).

Then for each x € §(x co) the equation F(x,y) = 0 has a

OI
solution Y, € S(yo,po) which is unique in that ball and

depends continuously on x.
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The proof is standard and is omitted here (see, e.g., Hilde-
brandt and Graves [7], and Cesari [1]).

Our: formulation does not represent the weakest possible
result. In fact, in going through the proof it is readily seen

that the continuity assumption about F can be reduced to separate

"continuity in each variable., Also, the conditions on A can be

weakened, as Cesari has shown. However, the conventional implic-

it function theorem for continuously differentiable operators 'is

" contained in this particular version.

Based on this implicit function theorem, we obtain the fol-

lowing result assuring that ¢ is a local mapping relation:

5.1 - Lemma: Let F: D € X X Y - Z be continuous on the open set
D in X x Y, and suppose that for each (x,y) € D there exists a
linear operator A(x,y): Y - Z with bounded inverse A_l(x,y) € L(Z,Yj
such that A depends continuously on (x,y) in the strong operator
topology. Finally, assume there exists an o > 0 such that for
each (x,y) € D ap = p(x,y) > 0 can be found with
(1) |IF(xy,) = Flxoy) = Alay) v,y Il = wliy,-v

< e 17 llyyy |
for Yq0¥, € S(y,p). Then @& is a local mapping relation and

D(%) = D(@O) is open in X.

Proof: For (xo,yo) € % we can find ¢ > 0, p > 0 such that




- 36 -

]

S(xo.c) X S(yo.p) c D. Set A

-1 -1
= +
that oy = a + ¢ la "l 7. Then, 7, € (0,01, Py € (O.p(xo.yo)]

A(xo,yo) and let ¢ > 0 be such

can be chosen such that |A(x,y) - Alx,,yy) |l < ¢ and [|IF(x,y,) ||
< (a7 - wg)e, for x € B(xy.o,) andy € Blyy.p,). Then
for any x € §(x0,oo) and y,,y, € §(y0,p0)

I (x,y,) - Flx,y)) - Alxg,v,) (v,=v))

< [[FGoyy) - Fluy)) - Blay)) (v,-y,) |

+latay) - Ayl Iy, - vyl

< (o +¢) lly,-y,|

Thus, all conditions of the implicit function theorem are satis-
fied and hence the restriction ¢ = 5 N (S(xo,co) X S(yo,po)) is
a continuous map from S(xo,co) into S(yo,po). Since (xo,yo) S
was arbitrary, this completes the proof.

Condition (7) is evidently satisfied if F has a continuous
partial derivative 93

2F('x,y) in D with a bounded inverse

(3 F (x, ) € L(z,V).

The guestion now arises when ¢ has the path-lifting pro-
perty. As in Section 4, a possible approach is here to add
conditions to 5.1 which assure that ¢ 1is a covering relation.
Loosely speaking, these conditions have to guarantee that the
radius % does not depend on (xo,yo) € &. This means, of

course, that we have to make uniformity assumptions about the
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continuity of A, F, etc. One possible result along this line
can be stated as follows:

5.2 - Theorem: Let F: D C X x Y - Z be uniformly continuous
on the open set .D in X x Y, and suppose that for each (x,y)
€ D a linear operator A(x,y): ¥ - 2 with bounded inverse
A_l(x,y) € L(Z,Y) is defined such that HA—l(x,y)H < 1/ > 0,
fdr all (x,y) € D. Assume further that A is uniformly con-
tinuous for (x,y) € D. Finally, let o > 0 and p > 0 be such

that for each (x,y) € D the inequality (7) holds with o < u

for all Y Y, € S(y,p). Then, & is a covering relation.

Proof: By going through the proof of 5.1 again, we see that

both Po and g, can now be chosen independently of (xo,yo)
€ &. Hence, the restriction ¢ 1is a continuous mapping from
S(xo,co) into S(yo,po) and for every x € S(yo,oo), p(x) € S(yo,po)
is the only solution of F(x,y) = 0 in that ball. Clearly, then,
3[S(x.,0.)] < L,)(S(y ,p~) 0 R(%)) and the sets on the right are
A O o) Q’"0
90 € $lx]

disjoint and open in R(®). This proves that ¢ is indeed a
covering relation.,

Theorem 5.2 essentially generalizes the first main theorem
of Ficken [5] who considers an operator F: J x Dy c Rl XY - Z

and uses instead of the operator function A the partial deriva-

tive azF(s,y), yet who places slightly less stringent continuity
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assumptions upon F. As indicated earlier, our continuity
assumptions for F in the basic implicit function theorem,
and therefore also in 5.2, can also be weakened to correspond
to those of Ficken.

As in Section 4 we can also assure the path-lifting pro-

perty for ¢ by making assumptions about R($). Following is

a simple result along this line:

5.3 - Theorem: Suppose that F: Dc X x Y - Z is continuous on
D, and that @& has the local mapping property. If R($) is
compact, then ¢ has the ]Q(D(Q)) continuation property.
Proof: Let p € WQU)(Q)) and gq: [0,t) © J - R(%) be a continuous
map such that F(p(t),q(t)) =0 for 0 < t < t. 1If {tk} c [0,t)
is any sequence with %Eg tk = £, then {q(tk)} < R (%) and hence
there exists a convergent subsequence. For the sake of simpli-
city assume that %ig q(tk) = ¢ € R(%). Since p(t) € D(3),
We have (p(t),¥) € D(%) x R(%) < D and, therefore, by the
continuity of F, F(p(t),y) =0, i.e., ¢ has the continuation
property for 1903(@))-

This result, together with 5.1, represents essentially an
extension of the second main result of Ficken [5], except
for the form of the continuity assumption about F. In this

case this continuity assumption can again be weakened if the local
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'mapping property is derived from conditions of the type used

in 5.2. The compactness assumption about R($) can be guaranteed

by suitable compactness conditions about F. For both these

points we refer to Ficken [5].
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